
Luigi Ferrettino
S254300

Homework 3
Deep Domain Adaptation

2020/01/04

The dataset

After an initial analysis of the dataset, we can start by loading the source and target data using ImageNet:

1 # Clone g i thub r e p o s i t o r y with data
2 i f not os . path . i s d i r (’ . / Homework3−PACS ’) :
3 ! g i t c lone h t tp s : // gi thub . com/ MachineLearning2020 /Homework3−PACS . g i t
4

5 DATA DIR = ’Homework3−PACS/PACS ’
6

7 # Prepare Py tor ch t r a i n / t e s t Da ta s e t s
8 t r a i n d a t a s e t = t o r c h v i s i o n . d a t a s e t s . ImageFolder (DATA DIR+ ’ /photo ’ , t ransform=t r a i n t r a n s f o r m)
9 t e s t d a t a s e t = t o r c h v i s i o n . d a t a s e t s . ImageFolder (DATA DIR + ’ / a r t p a i n t i n g ’ , t ransform=

eva l t rans fo rm)

Those are taken from two different domains: it is needed to load the photo folder as source domain for the
train and the art painting one as target domain and test.

Implementing the model

Task A

In order to build the DANN AlexNet it has been added a new classifier named dann classifier in the init ()
function of our class named RandomNetworkWithReverseGrad:

1 # OTHER LAYERS
2

3 s e l f . d a n n c l a s s i f i e r = nn . Sequent ia l (
4 nn . Dropout () ,
5 nn . L inear (256 ∗ 6 ∗ 6 , 4096) ,
6 nn . ReLU(inp lace=True) ,
7 nn . Dropout () ,
8 nn . L inear (4096 , 4096) ,
9 nn . ReLU(inp lace=True) ,

10 nn . L inear (4096 , 1000) ,
11)
12

13 #OTHER LAYERS

That is exactly a copy of the AlexNet classifier. The last nn.Linear layer is left with an output of 1000 because
of ImageNet (in order to copy the weights afterwards).
The last nn.Linear of dann classifier and classifier are modified to fit the 7 classes for the second one and 2
(the two domains) for the first one.

1 net . c l a s s i f i e r [6] = nn . L inear (4096 , 7)
2 net . d a n n c l a s s i f i e r [6] = nn . L inear (4096 , 2)

Task B

Now it is time to copy the weights of the pretrained model from the classifier to the new dann classifier:
in our alexnetdann() function is added a for-loop that takes the data from weights and biases of the Gy and
copies it on the Gd:

1

1 def alexnetdann (pre t ra ined=False , progres s=True , ∗∗kwargs) :
2 model = RandomNetworkWithReverseGrad (∗∗kwargs)
3 i f pre t ra ined :
4 s t a t e d i c t = l o a d s t a t e d i c t f r o m u r l (model ur l s [’ a l exne t ’] , p rogres s=progress)
5 model . l o a d s t a t e d i c t (s t a t e d i c t , s t r i c t=Fa l se) # Set s t r i c t to F a l s e to avo id e r r o r s
6

7 # Copy the we igh t s and data from the A lexNet c l a s s i f i e r to the dann one
8 for i in [1 , 4] :
9 model . d a n n c l a s s i f i e r [i] . weight . data = model . c l a s s i f i e r [i] . weight . data

10 model . d a n n c l a s s i f i e r [i] . b i a s . data = model . c l a s s i f i e r [i] . b i a s . data
11

12 return model

In particular the second and are the only nn.Linear layers to be copied.

Task C

At last, we must modify the forward() function inherited from nn.Model such that, when the parameter alpha
is passed, the batch must be forwarded to Gd (to Gy otherwise).

1 def forward (s e l f , x , alpha=None) :
2 f e a t u r e s = s e l f . f e a t u r e s (x)
3 # F l a t t e n the f e a t u r e s :
4 f e a t u r e s = f e a t u r e s . view (f e a t u r e s . s i z e (0) , −1)
5 # I f we pas s alpha , we can assume we are t r a i n i n g the d i s c r i m i n a t o r
6 i f alpha i s not None :
7 # g r a d i e n t r e v e r s a l l a y e r (backward g r a d i e n t s w i l l be r e v e r s e d)
8 r e v e r s e f e a t u r e = ReverseLayerF . apply (f ea tu re s , alpha)
9 d i s c r i m i n a t o r o u t p u t = s e l f . d a n n c l a s s i f i e r (r e v e r s e f e a t u r e)

10 return d i s c r i m i n a t o r o u t p u t
11 # I f we don ’ t pas s alpha , we assume we are t r a i n i n g with s u p e r v i s i o n
12 else :
13 c l a s s o u t p u t s = s e l f . c l a s s i f i e r (f e a t u r e s)
14 return c l a s s o u t p u t s

In this way, when we are training the discriminator it is applied the gradient reverse layer and then forwarded
to our discriminator Gd. Instead, when we are training the classifier it is only forwarded to the classifier

layers. This architecture tries to fool the features extractor Gf so that it will be trained on features not
dependent on the domain itself.

Domain adaptation

Task A

Now that our model has been designed, it is time to apply it. For this first task, we trained the AlexNet model
without adaptation on the photos domain (pretrained on ImageNet) and tested it on the art painting one.
With a batch size of 256, a learning rate of 0.0001 and 10 epochs we obtain an accuracy of 41%, that
demonstrates our domain adaptation problem: we cannot say for sure that our model will perform good in
real life tasks that shifts the domain (near all of them).
In order to do it, we simply trained on the dataloader that iterates batch-by-batch the train dataset forwarding
only the features without the alpha parameter so that we use the original AlexNet net.

2

Task B

For this second task, we are going to apply the domain adaptation to get better results on our test set. We train
simultaneously the classifier on the labeled source, the discriminator on the unlabeled source and unlabeled
target. This three steps are done sequentially in one iteration of the dataloader:

1 for i , (images , l a b e l s) in enumerate (t r a i n d a t a l o a d e r) :
2 # ∗∗ TRAIN ON SOURCE LABELS ∗∗
3

4 # ∗∗ TRAIN THE DISCRIMINATOR ON SOURCE ∗∗
5

6 # ∗∗ TRAIN THE DISCRIMINATOR ON TARGET ∗∗
7

8 opt imizer . s tep ()

In particular, the first step is the standard one used several time for training (and in the previous task). The
second one and the third are built as follows:

1 # ∗∗ TRAIN THE DISCRIMINATOR ON SOURCE ∗∗
2

3 # Forward pas s to the network
4 outputs = net (images , alpha=alpha)
5

6 l a b e l s z e r o s = torch . zeros (l a b e l s . shape [0]) . type (torch . LongTensor) . to (DEVICE)
7

8 # Compute l o s s based on output and zero−l a b e l s
9 l o s s source dann = c r i t e r i o n d a n n (outputs , l a b e l s z e r o s)

10

11 l o s s source dann . backward ()
12

13 # Log l o s s
14 i f i % LOG FREQUENCY == 0:
15 print (’ 2 Step {} , Loss {} ’ . format (cu r ren t s t ep , lo s s source dann . item ()))

1 # ∗∗ TRAIN THE DISCRIMINATOR ON TARGET ∗∗
2

3 t ry :
4 images2 , = next (d a t a l o a d e r i t e r a t o r)
5 except S t o p I t e r a t i o n :
6 print (”EXEPT”)
7 d a t a l o a d e r i t e r a t o r = i t e r (t r a in da ta loade r t a rge tdoma in)
8 images2 , = next (d a t a l o a d e r i t e r a t o r)
9

10 l a b e l s o n e s = torch . ones (l a b e l s . shape [0]) . type (torch . LongTensor) . to (DEVICE)
11

12 # Forward pas s to the network
13 outputs = net (images2 , alpha=alpha)
14

15 # Compute l o s s based on output and one−l a b e l s
16 l o s s t a r g e t = c r i t e r i o n d a n n (outputs , l a b e l s o n e s)
17

18 l o s s t a r g e t . backward ()
19

20 # Log l o s s
21 i f i % LOG FREQUENCY == 0:
22 print (’ 3 Step {} , Loss {} ’ . format (cu r ren t s t ep , l o s s t a r g e t . item ()))

We can see that for the source training it is used the same batch used by the first step, while for the target
training it is implemented an manual iterator on the test set that discards the labels too. The activation of the
training on the discriminator is triggered by the specification of the alpha parameter, as implemented in the
first tasks.
For this task, they have been chosen the same hyperparameters, with an adaptive alpha retrieved from the
paper of Ganin et al. that - depending on the current epoch, totale epochs, current step and others - goes from
0 to 1: the results is an accuracy of nearly 47%, so a good gain w.r.t. the net without adaptation.
From the Fig.1 we can see the three losses. It has been chosen a low number of epochs for time saving, but
leaving the epochs to 50-100 would lead to an average increase of the target discriminator loss.

3

Figure 1: Losses evolution

Task C

Looking at those accuracies, we can say that the DANN, on average, does give better results. All of this is
achieved because of the discriminator’s reversal layer that lead the features extractor to maximize the error of
the discriminator and tries to fool it generating domain invariant features on which the classifier is trained on,
giving better results. The dataset is relatively small and there are not so much possibilities of improvements,
but with bigger ones (like MNIST with other domains) it is possible to achieve even better.

Cross domain validation

The validation task applied to the DANNs is still a research topic. It can be possible to implement a cross
domain validation training on photos and testing on other domains to do some hyperparameters tuning (in
particular on sketch and cartoon datasets.

Task A

In this task we run a simple grid-search algorithm using nested for loops for different sets of hyperparameters.
In particular for batch sizes of 128, 256 and 512 and learning rates of 0.005, 0.001 and 0.01 using always 5
epochs for time saving. It has been run the train on photos once and simultaneously they have been saved the
best hyperparameters epoch by epoch for each combination, doing an average on the validation of cartoon and
sketch. All the results can be found in Table 1.

BATCH
LR

0.005 0.001 0.01

128 32.5% 23.0% 34.8%
256 21.4% 20.4% 31.1%
512 31.1% 24.5% 25.1%

Table 1: Grid-search without DANN

Task B

Using the best set of hyperparameters found so far (batch size of 128 and learning rate of 0.01) the perfor-
mances on art painting reach 45% of accuracy.

4

Task C

In this task we run a simple grid-search algorithm using nested for loops for different sets of hyperparameters.
In particular for batch sizes of 128, 256 and 512, learning rates of 0.005, 0.001 and 0.01 and alphas of 0.03
and 0.1 using always 5 epochs for time saving. It has been run the train on photos once and simultaneously
they have been saved the best hyperparameters epoch by epoch for each combination, doing an average on the
validation of cartoon and sketch. All the results can be found in Table 2. In general we can see an average
improvement of about 5% with respect to the standard AlexNet with peaks of 10%.

BATCH ALPHA LR: 0.005 LR: 0.001 LR: 0.01

128
0.03 32.8% 22.7% 41.3%
0.1 43.8% 26.0% 29.2%

256
0.03 24.9% 21.1% 32.2%
0.1 31.5% 25.0% 38.8%

512
0.03 25.6% 30.8% 27.0%
0.1 23.1% 27.7% 32.4%

Table 2: Grid-search with DANN

Task D

Using the best set of hyperparameters found so far (batch size of 128 and learning rate of 0.01 with alpha 0.1)
the performances on art painting reach 52% of accuracy, an improvement of about 9% with respect to the
standard AlexNet.

5

