
A low-power approach analysis
on image-based steering wheel angle prediction models

Alessandro Bozzella
Politecnico di Torino

s254764@studenti.polito.it

Luigi Ferrettino
Politecnico di Torino

s254300@studenti.polito.it

Rinaldo Clemente
Politecnico di Torino

s259536@studenti.polito.it

Abstract

Self-driving vehicles have spread dramatically over the
last few years. ADAS control system would have to de-
termine steering wheel angle, brakes and acceleration in
any driving environment. The navigation technology in au-
tonomous vehicles is an artificial intelligence application
which remains partially unsolved and has been significantly
explored by the automotive and technological industries.
Many image processing and computer vision techniques al-
low significant improvements on such recent technologies.
In recent years, autonomous driving algorithms, using low-
cost vehicle-mounted cameras, have attracted increasing
endeavors from both academia and industry. There are mul-
tiple fronts to these endeavors, including object detection on
roads, 3-D reconstruction etc., but in this work we focus on
a cameras-based model that directly maps raw input images
to steering angles using deep networks. This represents a
nascent research topic in computer vision.

1. Introduction

Nowadays, smart cars are becoming more and more an
everyday reality, despite the fact that at this time some au-
tonomous tasks are still really challenging to achieve. The
goal of our project is to work around the problem of the
steering wheel angle prediction, based only on the live im-
ages retrieved from the on-board cameras. There are a lot
of solutions proposed in the literature, but none of them
takes into account the trade-off between accuracy and com-
putational complexity, a climacteric topic when we are talk-
ing about the on-board systems, mostly if we are oriented
to cheap hardware (for production purposes) that aims at
developing accessible cars for everyone. The objective of
the proposed approach is basically to solve a regression
problem: estimate the steering angle giving a set of im-
ages. Therefore, this work uses preexisting CNN archi-
tectures as base (PilotNet, LSTM 3D-CONV, ResNet and
Transfer Learning) comparing each other on the trade-off

between the performance in terms of accuracy and the com-
putational complexity that each model can produce. This
analysis showed that the best performing model according
to our requirements is the one from Bojarski et al. [7]. Our
goal is to reduce the computational complexity trying not to
lose in terms of accuracy. The evaluation will be performed
using figures (saliency maps) and plots: the performance
metric will be the error on the steering wheel angle predic-
tion with respect to the memory and CPU load. As a final
demostration, it has been tested our model on a car simula-
tor game provided by Udacity1.

2. Related Work
The ambition of autonomous driving can trace back to

Leonardo da Vinci’s self-propelled cart (if not the earliest),
whose complicated control mechanism allows it to follow
a pre-programmed path automatically. To date, self-driving
cars are no longer a rare sight on real roads. According to
Ana Paula G.S. de Almeida et al. [2], CNNs are special-
ized artificial neural networks that process input data with
some kind of spatial topology, such as images, videos, audio
and text. An artificial neural network is considered convo-
lutional when it has at least one convolution layer and re-
ceives a multidimensional input (also referred as a tensor)
and applies a series of convolutions using a set of filters. In
addition to convolution layers, CNNs are usually composed
of other types of layers. Bojarski et al. [7] have used CNNs
(the net is known as PilotNet) to train input camera images
to predict the steering wheel angle. They have formulated
the steering wheel prediction as a regression problem and
have used three cameras (center, left and right) to augment
the data set during training, and thus generalize learning.
The center camera sees the middle of the road, whereas left
and right cameras are tilted sideways. Correction factor is
added to the steering angles corresponding to images col-
lected from left and right cameras. Data augmentation tech-
niques such as adding random rotations to the steering an-
gle have also been applied. Deep network architecture uses

1https://github.com/udacity/self-driving-car-sim

1

https://github.com/udacity/self-driving-car-sim


Figure 1. LSTM 3D-CONV used in [1]

five convolutional layers followed by five fully-connected
layers. As stated by Gaurav Bansal and Dhruv Choud-
hari [4], combination of three-dimensional Convolutional
Neural Network (3D-CNN) followed by Long Short-Term
Memory (LSTM) model was used to extract the spatio-
temporal features. In this form, extraction of the feature
of the image sequences was performed until the end of the
3D-CNN layer, then combine with the last layer before the
LSTM layer.

The ResNet model according Lu Chi and Yadong Mu
[6], first introduced the concept of skip connection. It con-
sists of several different repeating blocks that form resid-
ual connections. We still stack convolution layers as be-
fore but we now also add the original input to the output
of the convolution block. This is referred as skip connec-
tion. For the work of Andrew Simpson et al. [1], transfer
learning is a way of using high quality models that were
trained on existing large datasets. The idea of transfer learn-
ing is that features learned in the lower layers of the model
are likely transferable to another dataset. These lower level
features would be useful in the new dataset such as edges.

In his work, Simpson applied it to an LSTM 3D-CONV
architecture (fig.1). Our work explores several tactics, at
multiple stages of the network forwarding procedure. We
validate on real data so that the proposed network better
captures spatial-temporal information in terms of computa-
tional complexity trying to predict the steering wheel angle
in the most accurate way.

3. Dataset and Features

The dataset used is a merge of the Udacity Dataset 2-
22 (generated from the NVIDIAs DAVE-2 System [2]) with
a dataset composed only by photos taken from the simula-
tor as if they were real camera mounted on a car. Specif-
ically, data-collecting cars have three cameras mounted at
left/middle/right around the rear mirror. Time-stamped
video from the cameras is captured simultaneously with the
steering angle applied by the human driver. The dataset is
made up of a series of images and there is high correlation
among adjacent samples, therefore it is important during
training to shuffle the training images. Training data was
collected by driving on a wide variety of roads and in a dif-
ferent set of lighting and weather conditions and moreover
the validation strategy need to be chosen carefully: if we
randomize the whole dataset and choose a validation set, we
might get very similar images in the validation and training
sets. In its entirety, our dataset contains about 300k photos
from three different points of view (three cameras).

As a sperimental approach, it has been used the Sobel
filter on input images after a greyscale conversion and the
other preprocessing stages already explained, in order to ex-
tract only the countours of the road. Unfortunately, the re-
sults weren’t so good.

3.1. Data Preprocessing and Normalization

Our preprocessing task starts with the normalization of
the value range. Furthermore, images are cropped at the
center (66x200x3) to put the sky and trees out of the sight
and focus the net on the road. We have used data from left
and right cameras to augment the one collected by the cen-
ter camera; so, as another preprocessing step, we had to
adjust the steering angle by a fixed threshold to account the
positioning difference between these cameras. These off-
center cameras enable training for recovery paths for situa-
tions when car might weave from center of the road. Specif-
ically, we adjust the steering angles for images from left and
right cameras setting steering correction to a value of 0.2 rad
(supposing that the direction of the left and right cams shifts
the steering angle of about ±10◦) after cross validation.

2http://academictorrents.com

2

http://academictorrents.com/details/bcde779f81adbaae45ef69f9dd07f3e76eab3b27


3.2. Data Augmentation Methods

In order to feed the network with every kind of real-
world situation, have been applied data augmentation using
various random filters.

Figure 2. The architecture of the modified NVIDIA PilotNet

3.2.1 Random Brightness

The brightness of the image can be augmented by either
randomly darkening images, brightening images, or both.
The intent is to allow a model to generalize across images

trained on different lighting levels. This can be achieved by
converting images to HSV (Hue Saturation Value), scaling
up or down the V channel and converting back to the RGB
channel.

3.2.2 Random Shadow

From the car’s point of view, a shadow is nothing but the
dark portions of an image, which could also be bright at
times. So a self-driving car is still expected to predict the
correct steering angle. This is implemented by choosing
random points and shading all points on one side of the im-
age.

3.2.3 Random Flip

An image flip reverses the rows or columns of pixels in the
case of a vertical or horizontal flip respectively.

3.2.4 Random Translate

Translation just involves moving the image along the X or
Y direction (or both). This method of augmentation is very
useful as most objects can be located almost anywhere in
the image. This forces our neural network to look every-
where.

3.2.5 Random Shift H/V

A shift to an image means moving all pixels of the image to
one direction, such as horizontally or vertically, while keep-
ing the image dimensions the same. We shift the camera
images horizontally to simulate the effect of a car in differ-
ent positions on the road and add an offset corresponding to
the shift to the steering angle.

3.2.6 Others

Other random filters were applied to simulate snow (single
white pixels colouring), fog and rain. In the end, this last
technique was not used, because the entire train loop needed
more than one day to finish with poor results.

4. Methods
The research has been developed in two steps:

• Performance testing and computational complexity
derivation of all the models proposed.

• General improvement of the best model in terms of
computational complexity and validation set error.

As regards the first task, three different architectures
have been analyzed (both LSTMs and CNNs): the twos
from [1] and the NVIDIA one [2]. In particular, once they

3



Method Test RMSE Performance index
3D-CONV LSTM 0.1017 5e-2
ResNet + TL 0.0664 2.4e-2
NVIDIA PilotNet 0.0931 7.5e-3

Table 1. Performance comparison between the models (lower is
better).

have been trained on the same dataset using the same hy-
perparameters and same GPU hardware acceleration, they
have been validated in order to retrieve the best weights and
biases of each one of them. Finally, they have been tested
on the same test set using the same hardware.

During the testing phase, all the parameters (normalized)
of test RMSE (the square root of the MSE) ta, RAM con-
sumption Rc

3 and CPU load CPUl were bounded together
creating a performance index pi. This index is retrieved as
follows:

pi = RMSEt ·Rc · CPUl (1)

Using only the CPU (we do not investigate other hard-
ware architecture as GP-GPU, ASIC etc.). The results are
written in the table 4.

As it would be foreseen from the architecture semplicity
and a really low number of layers, the NVIDIA PilotNet is
the best in terms of performance with respect to the energy
consumption4.

The next step is to add some modifications to it in order
to have even better performances.

In particular, with respect to the original model, it has
been also added the Batch Normalization (BN) (on the
channel axis for convolutional layers) after each layer for
a faster training. It has also been tested using Dropout for
regularisation, then fixed at 0.2 after some tests. There has
been a lot of debate about when to apply BN, which is either
before the non-linearity or after the non-linearity.

Since it has been used ReLu activation at each layer,
applying BN after the ReLu activation was increasing the
mean and reducing the variance of the hidden layer acti-
vation (BN was not considering the negative activations),
hence it has been applied BN after the non-linearity. Fol-
lowing this idea, it has been scaled down the input image
to 200x66 (same as PilotNet) in order to keep parameters
of the fully connected layers low (the convolutional layers
are not affected). This was important to avoid overfitting:
models with very high params have a high entropy, leading
to overfit (i.e. memorize the training set). With low entropy,
gradient descent algorithm forces the model to learn

3The RAM index is normalized on 1GB.
4All the tests have been ran on a i7-8550U machine with DDR4 Dual-

Channel RAM without any GPU accaleration.

Figure 3. Caption

Figure 4. Caption

important patterns in the data instead of memorizing the
training set. On the other hand, having very low params is
also bad as the model may not learn anything. Then, the
increase in parameters could have been avoided by using
max-pooling, but it is generally used for spatial invariance
which is not desired in this case. The input to the model
was normalized by dividing the input pixels by 255. There

4



are better ways to normalize input images using the mean
and variance of the whole training set but this also works
fine. It has been used mean squared error loss without any
regularization: these design choices were taken after test-
ing these parameters on the validation set. The rest of the
network parameters remain unchanged. The model can be
seen in fig. 2.

5. Conclusions and Future Work

The best test set RMSE of the modified model is about
0.0868, a great improvement that takes the performance in-
dex to 7e-10.

In order to visualize what the network see, three saliency
maps have been created representing the two simulator
tracks and the Udacity real dataset by three sequential cap-
tures. In capture 3 the saliency map underlines the inten-
sification of the pixels towards the direction of the future
steering angle, permitting a really good estimation in the
simulator. In figure 4 too we can see a similar behaviour,
despite the fact that in the second case the car tends firstly
to go to the courve boundary and then change the steering.

Finally, a saliency map of a real road is showed in 5. It
is clear that, while the car is approaching, the network tends
to prefer the part of the image where the car must steer (in
this case, left).

Figure 5. Caption

One of the problems encountered was the non-
uniformity of the merged dataset that leads to poor results
shifting the subset from the simulator to the real data. A so-
lution could be a DANN architecture from Ganin et al. [9] in
order to exploit domain adaptation. Furthermore, the design
of the model could be integrated with V2X technologies
that, with the 5G networks that allows low latencies, can
reduce the steering error using the live information shared
between the cars. It must be pointed out that the weather
conditions (created with random modifications) increase the
difficulty of the goal, reducing the precision of the predic-
tion and thus the security of the driver. Better analytical
approaches are available, such the combination of the So-
bel filter [8] and Hough transform [3] with the estimation
proposed by the Kalman filter [5].

Finally, as a demo, it has been added a video record of
the proposed model in action, piloting a car on a track in a
game.

References
[1] Haoli Guo Andrew Simpson and Shuyang Du. Self-driving

car steering angle prediction based on image recognition.
CS231n final report, University of Stanford, 2017.

[2] Ana Paula G.S. de Almeida Arthur Emidio T. Ferreira and
Flavio de Barros Vidal. Autonomous vehicle steering wheel
estimation from a video using multichannel convolutional
neural networks. ICINCO, 2018.

[3] Richard O. Duda and Peter E. Hart. Use of the hough transfor-
mation to detect lines and curves in pictures. Commun. ACM,
1972.

[4] Dhruv Choudhari Gaurav Bansal. Convolutional architectures
for self-driving cars. CS231n final report, University of Stan-
ford, 2017.

[5] Rudolph Emil Kalman. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of
Basic Engineering, 1960.

[6] Yadong Mu Lu Chi. Deep steering: Learning end-to-end
driving model from spatial and temporal visual cues. arXiv
preprint arXiv:1708.03798v1, 2017.

[7] Daniel Dworakowski et al Mariusz Bojarski, Davide
Del Testa. End to end learning for selfdriving cars. arXiv
preprint arXiv:1604.07316v1, 2016.

[8] Irwin Sobel. An isotropic 3x3 image gradient operator. Pre-
sentation at Stanford A.I. Project 1968, 2014.

[9] Hana Ajakan Pascal Germain Hugo Larochelle Francois Lavi-
olette Mario Marchand Victor Lempitsky Yaroslav Ganin, Ev-
geniya Ustinova. Domain-adversarial training of neural net-
works. arXiv preprint arXiv:1505.07818v4, 2016.

5


