
HOMEWORK #1: kNN&SVM
Luigi Ferrettino, S254300

We would like to train, validate and test some models by doing parameters tuning. In order to
archieve it, the dataset will be splitted in a train set, a validation set and a test set. The second one
will be used to evaluate the model with a different set of k/hyperparameters in order to choose
the set of parameters that gives the highest accuracy on the validation set. After the tuning on the
validation set has been done, we will check the performance of our model on the test set.

[1]: from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV, KFold

from sklearn import datasets
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt

from lib import *

Dataset and preprocessing
Once we have loaded the Wine dataset, we could use some dimensionality reduction technique,
but we just take the first two features of the dataset and discard the other ones (applying a PCA
reduction at 2 dimensions using all the features available could gain a lot the prediction result,
because instead of losing a lot of information by discarding the other features we could limit the
loss by projecting all the features in a max-variance plane).

Then the dataset will be shuffled and splitted into train (50%), validation (20%) and test (30%) sets.

[2]: X, y = datasets.load_wine(return_X_y=True)
X = X[:, 0:2]

X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size=0.3,␣
↪→random_state=1)

X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval,␣
↪→test_size=0.2857, random_state=0)

Preprocessing is the foundamental task, so once we have splitted the three sets, it is time to nor-
malize. If we normalize every set, we leak information about either the response (from the future,
from our hold out data set into the training) or the evaluation of our model. This can cause con-
siderable optimism bias in our model evaluation. The idea in model validation is to mimic the
situation we would be in when our model is making production decisions, when we do not have
access to the true response. The consequence is that we cannot use the response in the test set for

1

anything except comparing to our predicted values.

Another way to approach it is to imagine that we only have access to one data point from our
hold out at a time (a common situation for production models). Anything we cannot do under
this assumption we should hold in great suspicion. Clearly, one thing we cannot do is aggregate
over all new data-points past and future to normalize our production stream of data, so doing
the same for model validation is invalid. We don’t have to worry about the mean of our test set
being non-zero, that’s a better situation to be in than biasing our hold out performance estimates.
Though, of course, if the test is truly drawn from the same underlying distribution as our train (an
essential assumption in statistical learning), said mean should come out as approximately zero.

But in this case we will not normaliza, as we are analyzing a really reduced and not-so-dispersed
dataset.

K-nearest neighbor
k-NN is one of the most easy algorithms for ML classification/regression. An new object is clas-
sified on the majority vote from the k nearest neighbors. The parameter k is odd (in binary clas-
sifications it could happen some parity situation), it must be tuned and it depends on the dataset.
Generally, for an increasing k the noise which compromises the classification decreases, but the
criterion of choice for the class becomes more blurred. The choice can be made through heuristic
techniques such as cross-validation. For what concerns our case, we will:

• Train on the train set.

• Evaluate for k=1, k=3, k=5 and k=7.

• Choose the best model 4. Apply it on the test set.

Model training and evaluation

In order to train the models we instantiate a KNeighborsClassifierfor for each k (n_jobs set to
-1 forces the program to use the maximum cores available on the running machine, since this
classifier is as simple as computational intensive) and we fit on the train set. At the same time
we use the model to predict on the validation set and we save everything in a data structure and,
using a personal library, we plot the four models with the decision boundaries.

[4]: print("\n********************************")
print("TASK: kNN classification")
print("********************************\n")

best_score = 0
best_k = 1
knn_models = []
knn_accuracies = []

for k in [1, 3, 5, 7]:
knn = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
knn.fit(X_train, y_train)

2

knn_models.append(knn)
accuracy = knn.score(X_val, y_val)
knn_accuracies.append(accuracy)
if accuracy > best_score:

best_score = accuracy
best_k = k

print('Best prediction accuracy on validation set found with k = ' + str(best_k))
print('{:.2%}\n'.format(best_score))

plotModels(fignum=0, X=X_train, Y=y_train, models=knn_models, titles=[
'k=1', 'k=3', 'k=5', 'k=7'], n=2)

plotAccuracyComparison(fignum=1, the_list=[1, 3, 5, 7],␣
↪→accuracy_list=knn_accuracies,

x_label='k parameter', title='Accuracy on validation set␣
↪→for any k', type='linear')

TASK: kNN classification

Best prediction accuracy on validation set found with k = 7
80.56%

3

Looking at this image we can infer that for low Ks the boundaries are more serrated, because the
classifier is not so aware of the overall distribution and the fit has a low bias, but a high variance.
On the contrary, for high Ks the boundaries become really smooth, with a high bias and a low
variance (resilience to outliers).

4

From these results we can see that the decision boundaries are really complex and non-linear, but
they reflects well the classes (it is used the Voronoi tessellation to patition the space in regions
and the boundary is a set of points at same distance from two different training examples). The
boundaries changes because of the modification of the Voronoi’s tessellation that, given the set of
points and the k, it is fixed for every class.

Model testing

After the best k value is found on the validation set, the model will be used on the test set, that
must simulate real world data. An accuracy comparison plot is needed too.

[5]: knn = KNeighborsClassifier(n_neighbors=best_k, n_jobs=-1)
knn.fit(X_trainval, y_trainval)
test_score = knn.score(X_test, y_test)
predictions = knn.predict(X_test)

print('Prediction accuracy on test set for k=' + str(best_k))
print('{:.2%}\n'.format(test_score))
print('report: \n' + classification_report(y_test, predictions))

5

Prediction accuracy on test set for k=7
81.48%

report:
precision recall f1-score support

0 0.80 0.87 0.83 23
1 0.94 0.89 0.92 19
2 0.64 0.58 0.61 12

accuracy 0.81 54
macro avg 0.79 0.78 0.79 54

weighted avg 0.81 0.81 0.81 54

The main problem of the k-NN is the computational complexity in space and time, especially for
big sets, that’s because some approximate versions are really used.

For what concerns the evaluation of the model on the test set, it is good. We evaluate with the
validation only on the 20% of the data, so the samples are not enough. Moreover, it must be
recalled that dataset has been prepared (in the preprocessing stage) and from the f1 in the report
the cuttings on the other features cause lacks of informations regarding the class_2.

Linear SVM: C tuning
Model training and evaluation

As we already have done with the K-nn, we will train and evaluate one model for each value of C
in our hyperparameter list:

[0.001, 0.01, 0.1, 1, 10, 100, 1000]

We want to choose the “C” that gives the highest accuracy when predicting the labels of the eval-
uation set. If more than one C gives the same accuracy, we choose the lowest C, so the one that
gives the larger margin. To train the models we instantiate a SVM for each C and we fit on the
train set. At the same time we use the model to predict on the validation set and we save every-
thing in a data structure and, using a personal library, we plot the seven models with the decision
boundaries.

[13]: print("\n********************************")
print("TASK: Linear SVM classification")
print("********************************\n")

best_score = 0
best_C = 0
linearsvc_models = []
linearsvc_accuracies = []

for C in [0.001, 0.01, 0.1, 1, 10, 100, 1000]:
svc = SVC(C=C, kernel='linear')

6

svc.fit(X_train, y_train)
linearsvc_models.append(svc)
accuracy = svc.score(X_val, y_val)
linearsvc_accuracies.append(accuracy)
if accuracy > best_score:

best_score = accuracy
best_C = C

print('Best prediction accuracy on validation set found with C = ' + str(best_C))
print('{:.2%}\n'.format(best_score))

plotModels(fignum=10, X=X_train, Y=y_train, models=linearsvc_models,␣
↪→titles=['C=0.001', 'C=0.01', 'C=0.1', 'C=1', 'C=10', 'C=100', 'C=1000'], n=3)

plotAccuracyComparison(fignum=11, the_list=[0.001, 0.01, 0.1, 1, 10, 100, 1000],␣
↪→accuracy_list=linearsvc_accuracies,

x_label='C parameter', title='Accuracy on validation set␣
↪→for any C', type='log')

TASK: Linear SVM classification

Best prediction accuracy on validation set found with C = 1
66.67%

7

8

As we can see from the above graph, the accuracy is increasing for higher values of C, the model
with the highest accuracy is in fact a small margin SVM: this means that the sample are not clearly
linearly separable.

Model testing

After the best C value is found on the validation set, the model will be used on the test set, that
must simulate real world data. An accuracy comparison plot is required too (for every C).

[8]: svc = SVC(C=best_C, kernel='linear')
svc.fit(X_trainval, y_trainval)
test_score = svc.score(X_test, y_test)
predictions = svc.predict(X_test)

print('Prediction accuracy on test set for C=' + str(best_C))
print('{:.2%}\n'.format(test_score))
print('report: \n' + classification_report(y_test, predictions))

Prediction accuracy on test set for C=1
85.19%

9

report:
precision recall f1-score support

0 0.87 0.87 0.87 23
1 0.90 1.00 0.95 19
2 0.70 0.58 0.64 12

accuracy 0.85 54
macro avg 0.82 0.82 0.82 54

weighted avg 0.84 0.85 0.85 54

The accuracy on the test set is really higher from what we expected. A possible cause can be
intrinsic in our evaluation technique: we are not using enough samples to evaluate the model; a
better result can be achieved using more advanced techniques, such as the one based on cross-
validation (k-fold). For what concerns the boundaries, we can obviously see that they are linear.
That’s because we are solving the soft margin problem of the SVM linear classification adding a
slack variable in the hard margin one and the C parameter in the objective function.

RBF SVM: C tuning
Now we’ll train and evaluate a SVM that uses the Radial Basis Function kernel instead of the
linear one and we will proceed exactly as the previous steps.

Model training and evaluation

[10]: print("\n********************************")
print("TASK: RBF SVM classification")
print("********************************\n")

best_score = 0
best_C = 0
rbfsvc_models = []
rbfsvc_accuracies = []

for C in [0.001, 0.01, 0.1, 1, 10, 100, 1000]:
svc = SVC(C=C, kernel='rbf', gamma='auto')
svc.fit(X_train, y_train)
rbfsvc_models.append(svc)
accuracy = svc.score(X_val, y_val)
rbfsvc_accuracies.append(accuracy)
if accuracy > best_score:

best_score = accuracy
best_C = C

print('Best prediction accuracy on validation set found with C = ' + str(best_C))
print('{:.2%}\n'.format(best_score))

10

plotModels(fignum=12, X=X_train, Y=y_train, models=rbfsvc_models, titles=['C=0.
↪→001', 'C=0.01', 'C=0.1', 'C=1', 'C=10', 'C=100', 'C=1000'], n=3)

plotAccuracyComparison(fignum=13, the_list=[0.001, 0.01, 0.1, 1, 10, 100, 1000],␣
↪→accuracy_list=rbfsvc_accuracies,

x_label='C parameter', title='Accuracy on validation set␣
↪→for any C', type='log')

TASK: RBF SVM classification

Prediction accuracy on validation set found with C = 10
80.56%

11

12

In this case, as the problem was not linearly separable (on the valuation set), here we have found a
muche better score. The C let behaves the boundaries as a large margin classifier at the beginning
and the as a narrow margin classifier at the end (large C).

Model testing

[14]: svc = SVC(C=best_C, kernel='rbf', gamma='auto')
svc.fit(X_trainval, y_trainval)
test_score = svc.score(X_test, y_test)
predictions = svc.predict(X_test)

print('Prediction accuracy on test set for C=' + str(best_C))
print('{:.2%}\n'.format(test_score))
print('report: \n' + classification_report(y_test, predictions))

Prediction accuracy on test set for C=1
83.33%

report:
precision recall f1-score support

0 0.83 0.87 0.85 23

13

1 0.90 0.95 0.92 19
2 0.70 0.58 0.64 12

accuracy 0.83 54
macro avg 0.81 0.80 0.80 54

weighted avg 0.83 0.83 0.83 54

This time we got an accuracy that is better with respect to the one found during the evaluation.
The RBF SVM is built applying the kernel trick to maximum-margin hyperplanes. The resulting
algorithm is formally similar, except that every dot product is replaced by a non-linear kernel
function. This allows the algorithm to fit the maximum-margin hyperplane in a transformed fea-
ture space. The transformation may be non-linear and the transformed space high-dimensional;
although the classifier is a hyperplane in the transformed feature space, it may be nonlinear in the
original input space. In our case (RBF as kernel function) the boundaries are exactly the practi-
cal implication of the RBF as thekernel trick; in fact they resembles to linked gaussian functions
drawn at different shapes. The problem of too little informations on the class_2 persists, we will
use at the end the PCA combined with a Scaler.

RBF SVM: grid-search (C and gamma)
Let’s now make two lists of values for the two hyperparameters of the SVM that we want to tune:
C and, since we are using a RBF Kernel, γ. It is necessary to tell that the γ parameter was in the
RBF with only C tuning too. The difference is that if we do not explicitly pass it, the default value
of γ is 1/n_features. The margin width of the SVM is directly proportional to 1/C, so for value
of C >> 1 we’ll get a narrow margin, this means that our model will behave like a small margin
SVM, thus the decision boundaries will depend only on fewer samples. Instead, if 0 < C < 1, our
model will behave like a large margin classifier, thus expanding the margin such that the decision
boundary position will be influenced by more points. If we choose a small margin (large C), we
don’t trust that our data are well separated, so it will be difficult to classify them, and in this case,
a small margin will help. But if the margin is too small, it could be impractical to separate the
classes using too few samples as support vectors. The γ parameter is specific for the SVM that
uses an RBF kernel, it defines the distance of influence of each sample. Now we’ll train a SVM
that uses the RBF kernel, and we’ll choose the best hyperparameters C and γ that give us the
highest accuracy when predicting the labels. We need to train and test a SVM for each couple of
parameters, performing a grid search over the accuracies obtained by each model, and selecting
the values of C and γ used by the model that performed the best.

Model training and evaluation

As we already done previously, we use the SVM class with a nested for loopto create every possi-
ble model.

[12]: print("\n********************************")
print("TASK: RBF SVM classification with grid-search")
print("********************************\n")

best_score = 0

14

best_C = 0
best_gamma = 0
gridsvc_models = []
gridsvc_accuracies = []

for C in [0.001, 0.01, 0.1, 1, 10, 100, 1000]:
for gamma in [0.001, 0.01, 0.1, 1, 10, 100, 1000]:

svc = SVC(C=C, kernel='rbf', gamma=gamma)
svc.fit(X_train, y_train)
gridsvc_models.append(svc)
accuracy = svc.score(X_val, y_val)
gridsvc_accuracies.append(accuracy)
if accuracy > best_score:

best_score = accuracy
best_C = C
best_gamma = gamma

print('Best prediction accuracy on validation set found with C = ' + str(best_C)␣
↪→+ ' and gamma = ' + str(best_gamma))

print('{:.2%}\n'.format(best_score))

scores = np.array(gridsvc_accuracies).reshape(len([0.001, 0.01, 0.1, 1, 10, 100,␣
↪→1000]), len([0.001, 0.01, 0.1, 1, 10, 100, 1000]))

plt.figure(num=9, figsize=(8, 6))
plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,

norm=MidpointNormalize(vmin=0.2, midpoint=0.92))
plt.xlabel('gamma')
plt.ylabel('C')
plt.colorbar()
plt.xticks(np.arange(len([0.001, 0.01, 0.1, 1, 10, 100, 1000])), [0.001, 0.01, 0.

↪→1, 1, 10, 100, 1000], rotation=45)
plt.yticks(np.arange(len([0.001, 0.01, 0.1, 1, 10, 100, 1000])), [0.001, 0.01, 0.

↪→1, 1, 10, 100, 1000])
plt.title('Validation accuracy')

TASK: RBF SVM classification with grid-search

Prediction accuracy on validation set found with C = 100 and gamma = 1
77.78%

15

[12]: Text(0.5, 1.0, 'Validation accuracy')

Model testing

Now that we have choosen the best values for Gamma and C, we can train a model with this
parameters and test it on the test set.

[15]: svc = SVC(C=best_C, kernel='rbf', gamma=best_gamma)
svc.fit(X_trainval, y_trainval)
test_score = svc.score(X_test, y_test)
predictions = svc.predict(X_test)

print('Prediction accuracy on test set for C = ' + str(best_C) + ' and gamma = '␣
↪→+ str(best_gamma))

print('{:.2%}\n'.format(test_score))
print('report: \n' + classification_report(y_test, predictions))

16

Prediction accuracy on test set for C = 1 and gamma = 1
83.33%

report:
precision recall f1-score support

0 0.83 0.87 0.85 23
1 0.90 0.95 0.92 19
2 0.70 0.58 0.64 12

accuracy 0.83 54
macro avg 0.81 0.80 0.80 54

weighted avg 0.83 0.83 0.83 54

This time we plotted a heatmap that shows the accuracy obtained by each model trained with
a different couple of parameters. As we can see from the plot there is a specific region of the
heatmap populated by high accuracy values: also in this case, a very small value of C doesn’t
works well to classify our samples. Moreover, an high value of γ isn’t working very well, even if
we have an high value for C. We obtained the same accuracy on the test set w.r.t. the "only C" RBF.
That’s because probably the γ is automatically chosen in the "only C" one and it is similar to the
one in the grid-search.

RBF SVM: 5-fold cross-validation
Now we’ll use the K-fold cross-validation technique to validate our models. As usual, we want
to find the values of C and γ that give us the highest accuracy. By using cross-validation, we are
not splitting the dataset into three parts, but we are splitting it only into a training set and a test
set. The training set will then be splitted into a number of “K” different sets, called “folds”, and
we’ll perform K rounds of training and evaluation, each time training on K-1 folds, and validating
on the remaining fold. This will allow to perform the validation more in depth, by using more
samples. We have a chance that by doing this we’ll tune the model with the right parameters.

Cross-validation and testing

We’ll first divide the dataset into training and test sets, then we’ll use a pipe composed by a
StandardScaler and a SVC classifier. After that the params are defined and the KFold of 5 is
instantiated we run the GridSearchSV using as estimator the pipe (in order to normalize only one
fold at a time at runtime) and as folds the X_train splitted.

[16]: print("\n********************************")
print("TASK: RBF SVM classification with k-fold")
print("********************************\n")

X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size=0.3,␣
↪→random_state=1)

pipe = Pipeline([

17

('mm', MinMaxScaler()),
('svc', SVC(kernel='rbf'))

])

params = {
'svc__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'svc__gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000]

}

kfold = KFold(5)

search = GridSearchCV(
estimator=pipe,
param_grid=params,
n_jobs=-1,
iid=False,
cv=kfold.split(X=X_trainval, y=y_trainval),
return_train_score=True

)

kfoldSVC = search.fit(X_trainval, y_trainval)

result = kfoldSVC.best_estimator_.score(X_test, y_test)
predictions = kfoldSVC.best_estimator_.predict(X_test)

print("Best average score found for C = " + str(kfoldSVC.best_params_['svc__C'])␣
↪→+ " and gamma = " + str(kfoldSVC.best_params_['svc__gamma'])

+ "\n-> " + '{:.2%}\n'.format(kfoldSVC.best_score_))

print("Score applying it on the test set -> " + '{:.2%}\n'.format(result))
print('report: \n' + classification_report(y_test, predictions))

TASK: RBF SVM classification with k-fold

Best average score found for C = 1 and gamma = 10
-> 81.37%

Score applying it on the test set -> 83.33%

report:
precision recall f1-score support

18

0 0.83 0.87 0.85 23
1 0.90 0.95 0.92 19
2 0.70 0.58 0.64 12

accuracy 0.83 54
macro avg 0.81 0.80 0.80 54

weighted avg 0.83 0.83 0.83 54

Finally, we obtained an accuracy on par with the one obtained during the evaluation (it is almost
the same). As we said, this is because we are deciding which parameters to use by performing a
much deeper analysis: thanks to the cross-validation technique, we are using near four times (k-1)
more samples to evaluate the models. Unfortunately we do not have any possibility to gain our
accuracy, because of the loss of informations caused at the start choosing only the first 2 features.

Performances with 2-PCA and normalization
In this last task we’ll show how it is important the principal component analysis: instead of losing
informations by discarding all the features but two, we can run a PCA to reduce all the features in
a synthetized 2D representation in order to lose as little as possible informations about the original
dataset. In addiction, scaling the data could improve the prediction accuracy because of some
samples that are “out of order”.

This is done in another script and imported directly (nothing to say for what concerns the code, it
is simply added the PCA indtead of the cutting).

The performances are, obviously, really good: the prediction on the test set reaches everytime 98%
or more. This is a dimonstration on the fact that pre-processing is the first key to archive the best
performance on our ML algorithm.

[33]: %load withPCA.py

TASK: kNN classification

Prediction accuracy on validation set found with k = 3
94.44%

Prediction accuracy on test set for k=3
96.30%

report:
precision recall f1-score support

0 0.96 1.00 0.98 23
1 0.95 0.95 0.95 19

19

2 1.00 0.92 0.96 12

accuracy 0.96 54
macro avg 0.97 0.95 0.96 54

weighted avg 0.96 0.96 0.96 54

TASK: Linear SVM classification

Prediction accuracy on validation set found with C = 0.1
94.44%

Prediction accuracy on test set for C=0.1
96.30%

report:
precision recall f1-score support

0 0.96 1.00 0.98 23
1 0.95 0.95 0.95 19
2 1.00 0.92 0.96 12

accuracy 0.96 54
macro avg 0.97 0.95 0.96 54

weighted avg 0.96 0.96 0.96 54

TASK: RBF SVM classification

Prediction accuracy on validation set found with C = 1
91.67%

Prediction accuracy on test set for C=1
96.30%

report:
precision recall f1-score support

0 0.96 1.00 0.98 23
1 0.95 0.95 0.95 19
2 1.00 0.92 0.96 12

accuracy 0.96 54
macro avg 0.97 0.95 0.96 54

20

weighted avg 0.96 0.96 0.96 54

TASK: RBF SVM classification with grid-search

Prediction accuracy on validation set found with C = 1 and gamma = 0.1
94.44%

Prediction accuracy on test set for C = 1 and gamma = 0.1
96.30%

report:
precision recall f1-score support

0 0.96 1.00 0.98 23
1 0.95 0.95 0.95 19
2 1.00 0.92 0.96 12

accuracy 0.96 54
macro avg 0.97 0.95 0.96 54

weighted avg 0.96 0.96 0.96 54

TASK: RBF SVM classification with k-fold

Best average score found for C = 1 and gamma = 1
-> 98.40%

Score applying it on the test set -> 98.15%

report:
precision recall f1-score support

0 0.96 1.00 0.98 23
1 1.00 0.95 0.97 19
2 1.00 1.00 1.00 12

accuracy 0.98 54
macro avg 0.99 0.98 0.98 54

weighted avg 0.98 0.98 0.98 54

21

